1. எரிமக் கலன் - அட்டவணை
  2. சிலிக்கன் சில்லு செய்முறை - அட்டவணை
  3. காற்றில் மாசு கட்டுப்படுத்துதல் அட்டவணை
  4. இயற்பியல் பதிவுகள் தொகுப்பு-1. அட்டவணை
  5. காலத்தின் வரலாறு - அட்டவணை
  6. சோலார் செல் அட்டவணை

Sunday, November 21, 2010

சோலார் செல் (சிலிக்கன்) பகுதி 2

இதற்கு முந்திய ஒரு பதிவில் சிலிக்கன் சோலார் செல் பற்றி பார்த்தோம். அமார்பஸ் சிலிக்கன் சோலார்செல் இவற்றை பற்றி இந்தப் பதிவில் பார்க்கலாம். பாலிக் கிரிஸ்டல், மோனோ க்ரிஸ்டல், அமார்ஃபஸ் இவற்றுக்கு ஒரு உதாரணம் என்ன என்றால்,

1. பெரிய கிரானைட் கல் என்பது மோனோ க்ரிஸ்டல் . ஒரே கல் பெரிய அளவில் ஒட்டுப் போடாமல் இருக்கும். (சீராக அணுக்கள் அமைந்து இருக்கும்),

2. பல கருங்கல் ஜல்லி சேர்ந்தது பாலி க்ரிஸ்டல் (ஒரு க்ரிஸ்டலில் கொஞ்ச தூரம் அணுக்கள் சீராக இருக்கும், அடுத்து இன்னொரு க்ரிஸ்டல் இருக்கும்),. பல ஜல்லிகளை வைத்து கொஞ்சம் சிமெண்ட் கலந்து ஒரு பலகை செய்தால் இருப்பது போல.

3. ஒரு மூட்டை மணல் என்பது அமார்ஃபஸ் (எதுவுமே வரிசையாக சீராக இருக்காது) என்று வைத்துக் கொள்ளலாம்.

இவற்றை தயாரிக்கும் முறைகளில் வித்தியாசம் இருக்கிறது. அதைப்போலவே இவற்றிலிருந்து செய்யும் சோலார் செல்களின் திறனும் வித்தியாசப் படும்.

சிலிக்கன் செல் வகைகளின் திறன்:
மோனோ க்ரிஸ்டல் (MONO CRYSTAL) என்ற சிலிக்கனை செய்ய மிக அதிக செலவாகும். இந்த சிலிக்கனில் சோலார் செல் செய்தால், இதன் திறன் அதிகமாக இருக்கும். இதற்கு என்ன காரணம்? சூரிய ஒளி படும்போது, எலக்ட்ரான்கள் வரும். அவை சிலிக்கனில் பயணம் செய்துதான் வெளியே இருக்கும் மின்கம்பிக்கு வரவேண்டும். மோனோ க்ரிஸ்டல் வகை சிலிக்கனில் இந்த எலக்ட்ரான்கள் பயணம் செய்ய தடை குறைவாக இருக்கும். அதனால் அதிகபட்ச மின்சாரம் கிடைக்கும்.

பாலி க்ரிஸ்டல் சிலிக்கன் நடுத்தரமாக இருக்கும். இது தயாரிக்க ஓரளவு செலவாகும், ஆனால் இதில் கிடைக்கும் மின்சாரமும் கொஞ்சம் குறைவாக இருக்கும்.

அமார்ஃபஸ் சிலிக்கன் என்பதற்கும் மோனோ க்ரிஸ்டல்/பாலி க்ரிஸ்டலுக்கும் நிறைய வேறுபாடுகள் உண்டு. அமார்ஃபஸ் என்பதை தயாரிக்க செலவு குறைவு. இதை ‘THIN FILM' என்ற குறைந்த தடிமன் உள்ள படலமாக படிய வைக்கலாம். அதனால் பொருள் செலவு மிச்சம். இது தவிர, வேறு ஒரு பயனும் உண்டு.

சூரிய ஒளி விழும் கோணம்:

சோலார் செல்லை, நேராக மேல் நோக்கி வைத்தால், அதில் உச்சி வேளையில் மட்டுமே சூரிய ஒளி நேராகப் படும். காலையிலும் மாலையிலும் சாய்வாகத்தான் ஒளி விழும், அதனால் மின்சாரம் குறைவாகத்தான் கிடைக்கும். அதிகம் மின்சாரம் வேண்டும் என்றால், சூரிய காந்திப் பூவைப் போல, இந்த செல்லை காலையில் இருந்து மாலை வரை திருப்பி வைக்க வேண்டும். இதற்கு TRACKING என்று பெயர். அதற்கு செலவு ஆகும்.

இந்த அமார்ஃபஸ் சிலிக்கன் சோலார் செல்லில், சூரிய ஒளி நேராக விழுந்தாலும் சாய்வாக விழுந்தாலும் அதை ஏறக்குறைய ஒரே அளவு மின்சாரமாக்கும் தன்மை கொண்டது. நிறைய சாய்வாக விழுந்தால் (அதிகாலை மற்றும் மாலை) அப்படி செய்யாது, ஆனால் மற்ற செல்களை விட இது இந்த விதத்தில் பரவாயில்லை. அதனால், TRACKING செலவு மிச்சமாகும்.


அமார்ஃபஸ் சிலிக்கன் சோலார் செல் தயாரிக்கும் முறை:

ஒரு கண்ணாடியின் மேல் சிலிக்கன் அணுக்களை, CVD என்ற ஆவி நிலை வேதி சேர்க்கை மூலம் படிய வைப்பார்கள். இது சுமார் ஒரு மைக்ரான் தடிமன் இருக்கும். இந்த அளவிலேயே இது சூரிய ஒளியில் பெரும்பாலான அளவை விழுங்கிவிடும். இதற்கு பதில் மோனோ க்ரிஸ்டல் சிலிக்கனை எடுத்தால் அது சுமார் 200 மைக்ரான் அளவு தடிமன் இருக்கும்.

இப்படி படிய வைக்க முடியும் என்பதால், இதை FLEXIBLE ஆக இருக்கும், எளிதில் வளையும் தன்மை கொண்ட பொருள்கள் மேலே கூட படிய வைக்கலாம். அதாவது சோலார் செல்லை எடுத்து, பாயை சுருட்டுவது போல சுருட்டி எடுத்து செல்ல முடியும். அவ்வளவு சீக்கிரம் உடையாது. இதற்கு பதில் மோனோ க்ரிஸ்டல் சிலிக்கன் சோலார் செல்லை பார்த்தால், அது கண்ணாடி போல எளிதில் உடைந்துவிடும், அதை ஒரு இடத்திலிருது இன்னொரு இடத்திற்கு எடுத்து செல்ல கவனம் தேவை.

இந்த அமார்ஃபஸ் சிலிக்கன் சோலார் செல்லில், மின்சாரமாக்கும் திறன் குறைவு என்று பார்த்தோம். இன்னொரு பிரச்சனை என்ன என்றால், புது செல்லில் ஓரளவாவது மின்சாரம் வரும், ஆனால் சில் வருடங்களில் அதன் திறன் இன்னமும் குறைந்து விடும். மோனோ க்ரிஸ்டலில் செய்தால் அது 20 அல்லது 30 வருடங்களில் கூட கொஞ்சம்தான் திறன் குறையும் (MAXIMUM 20% LOSS) .


குறிப்பு: இவை எல்லாம் மேலோட்டமாகவே எழுதுகிறேன். ஒவ்வொன்றையும் விளக்கமாக ’எப்படி தயாரிப்பது, அதில் என்ன பிரச்சனை, எப்படி வேலை செய்கிறது’ என்று எழுத நிறைய நேரம் தேவை. ஒன்றுமே எழுதாமல் இருப்பதற்கு பதில், மேலோட்டமாகவாவது எழுதுவோமே என்று இந்த முயற்சி.

சோலார் செல் (DSSC) பகுதி 2

DSSC அல்லது DSC என்ற வகை சோலார் செல்லின் அமைப்பை முந்திய பதிவில் பார்த்தோம். இது வேலை செய்யும் விதத்தை இந்தப் பதிவில் பார்க்கலாம். இதன் வடிவமைப்பின் படி, மின்சாரத்தை கடத்தும் கண்ணாடி வழியாக சூரிய ஒளி செல்லும். அடுத்து டைடானியா என்று சொல்லப்படும் டைடானியம் ஆக்சைடு வழியாக ஒளி செல்லும் (டைடானியம் ஆக்சைடு வெள்ளை நிறத்தில் இருக்கும்). சிறு துகள்களாக இருக்கும் டைடானியம் ஆக்சைடு வழியாக ஒளி செல்லும்போது கொஞ்சம் சிதறடிக்கப் பட்டாலும், பெரும்பாலும் உள்ளே சென்று விடும்.

உள்ளே, Dye அல்லது சாயம் தண்ணீரில் கரைந்து இருக்கும். சாயத்தின் மூலக்கூறுகள் கொஞ்சமாக டைடானியம் ஆக்சைடு மேல் ஒட்டியும் இருக்கும். இதை ஆங்கிலத்தில் ADSORPTION என்று சொல்வார்கள். ருதீனியம் பாலி பிரிடைடு (Ruthenium Poly pyridide) என்ற வேதிப்பொருள் சாயமாகப் பயன்படுகிறது, ஆனால் வேறு சில சாயங்களும் பயன்படுத்தலாம். ருதீனியம் என்பது தங்கத்தை விட விலை உயர்ந்த தனிமம், ஆனால் சோலார் செல் செய்ய இது மிகக் குறைந்த அளவே தேவைபடும். ருதீனியம் பாலி பிரிடைடுக்கு பதில் வேறு சாயங்கள் பயன்படுத்தினால், மின்சாரம் குறைந்த அளவில் தான் கிடைக்கிறது, அதனால் இன்னமும் ” விலை குறைவாக ஆனால் நல்ல திறன் உள்ள வேறு சாயம் கிடைக்குமா” என்ற கோணத்தில் ஆராய்ச்சி தொடர்ந்துகொண்டு இருக்கிறது.



இந்த சாயத்தின் வேலை என்ன என்றால், சூரிய ஒளியை விழுங்கி, கட்டற்ற எலக்ட்ரான்களை உருவாக்கி டைடானியம் ஆக்சைடுக்கு கொடுக்க வேண்டும். இதற்கு முன்பாக, டைடானிய்ம் ஆக்சைடு ஒரு குறைகடத்தி என்பதைப் பார்த்தோம். எல்லா குறைகடத்திகளுக்குமே, ‘ஒளியை மின்சாரமாக்கும்’ தன்மை உண்டு. ஆனால், ‘எந்த ஒளியை மின்சாரமாக்கும்’ என்ற விதத்தில் வேறுபாடு உண்டு. எடுத்துக்காட்டாக, டைடானியம் ஆக்சைடு “அல்ட்ரா வயலட்” என்று சொல்லப்படும் “புற ஊதா” கதிர்களை மின்சாரமாக்கும். காட்மியம் டெலுரைடு என்பது, “கண்ணுக்கு தெரியும்” ஒளியில் பெரும்பகுதியை மின்சாரமாக்கும். சிலிக்கன் என்பது “கண்ணுக்கு தெரியும் ஒளியில்” ஓரளவு பகுதியை மின்சாரமாக்கும்.

சூரிய ஒளியில் VISIBLE என்ற கண்ணுக்கு தெரியும் ஒளிதான் அதிகம். இந்த DSC செல்லில், டைடானியம் ஆக்சைடு, ‘புற ஊதாக்’ கதிர்களை நேரடியாக மின்சாரமாக்கும். ஆனால் அதன் அளவு குறைவு. சாயமானது ‘கண்ணுக்கு தெரியும்’ ஒளியில் பெருமளவு மின்சாரமாக்கும், அதை டைடானியம் ஆக்சைடுக்கு கொடுக்கும். இதுதான் வெளியில் கிடக்கும் மின்சாரத்தின் பெருமளவு ஆகும்.

இப்படி வரும் எலக்ட்ரான்களை நாம் “மின்சாரம் கடத்தும் கண்ணாடி” மூலம் வெளியே எடுத்து பயன்படுத்தலாம். இந்த வகை கண்ணாடிக்கு உதாரணம், “ஃபுளூரைடு கலந்த தகர ஆக்சைடு”, ஆங்கிலத்தில் "Fluoride doped Tin Oxide".

சரி, இதில் அயொடைடு உப்புக்கு என்ன வேலை?

சாயமானது ஒளியை விழுங்கி எலக்ட்ரானை கொடுத்த பிறகு ‘பாசிடிவ் சார்ஜ்’ (Positive Charge) இருக்கும். இப்போது, அருகில் இருக்கும் இன்னொரு சாயத்தின் மூலக்கூறு ஒளியை வாங்கி எலக்ட்ரானைக் கொடுப்பதாக கற்பனை செய்து கொள்ளுங்கள். இப்போது பாசிடிவ் சார்ஜ் இருக்கும் சாயம் இந்த எலக்ட்ரானை ஈர்க்கும். இந்த சாயமும் எலக்ட்ரானும் சேர்ந்தால், நமக்கு ஒரு பயனும் இல்லை. இந்த எலக்ட்ரான் டைடானியம் ஆக்சைடு மூலம் வெளியே வந்தால்தான் நமக்கு மின்சாரம் கிடைக்கும்.

அப்படி என்றால் பாசிடிவ் ஆக இருக்கும் சாயத்திற்கு வேறு வகையில் எலக்ட்ரானை கொண்டு வர வேண்டும். முதலில் வெளியே வந்த எலக்ட்ரானகள், நாம் மின்சாரமாகப் பயன்படுத்திய பிறகு அடுத்த மின் தகடுக்கு (electrode) வரும். இதுதான் சோலார் செல்லில் கீழே இருக்கும் தகடு.

இந்த எலெக்ட்ரானைக் கொண்டு வந்து ‘பாசிடிவ்’ ஆக இருக்கும் சாயத்திற்கு கொடுப்பதுதான் அயோடைடு உப்பின் வேலை.




அயோடைடு உப்பு ஒன்றும் ‘சும்மா’ எலக்ட்ரானை தூக்கி வந்து கொடுக்காது. ஒவ்வொரு வேலைக்கும் கூலி உண்டு. இங்கே அயோடைடு உப்பு எலக்ட்ரானை வாங்கி வேதிவினையில் ஈடுபடும். அப்போதுதான் ‘எலக்ட்ரானை தூக்கிக் கொண்டு’ வரும். தண்ணீருக்குள் நகர்ந்து சென்று , சாயம் இருக்கும் இடத்தில் சென்று , எலக்ட்ரானை இழந்து இருக்கும் சாயத்திற்கு இந்த எலக்ட்ரானை கொடுக்கும். இப்படி நகர்ந்து செல்வதை DIFFUSION என்று ஆங்கிலத்தில் சொல்வார்கள்.

எலக்ட்ரானைக் கொடுப்பதும் ஒரு வேதிவினையின் வழியாகத்தான். அயோடைடு எலக்ட்ரானைக்
கொடுத்த பின், மீண்டும் தண்ணீர் வழியே நகர்ந்து வந்து மின் தகட்டிற்கு வந்து அடுத்த எலக்ட்ரானை வாங்க தயாராகிவிடும்.

மற்ற வகை சோலார் செல்களில் இப்படி மூலக்கூறுகள் அல்லது அயனிகள் நகர்ந்து செல்வது இல்லை. எலக்ட்ரான்கள் மற்றும் துளைகள் இவை இரண்டும்தான் பயணம் செய்யும்.

இந்த சோலார் செல்லின் நிறை குறை என்ன?

இதை குறைந்த செலவில் செய்ய முடியும். ருதீனியம் இல்லாமல் கூட, (எ.கா. இலைகளைப் பறித்து, கசக்கி சாறாக்கி, அந்த பச்சயத்தை வைத்துக் கூட) செய்ய முடியும் என்று விஞ்ஞானிகள் நிரூபித்து இருக்கிறார்கள்


இவற்றின் திறன் குறைவு. அதாவது, ஒரு சதுர அடி சோலார் செல்லை எடுத்துக் கொண்டால், ‘சிலிக்கன்’ சோலார் செல் அதிக அளவு மின்சாரம் கொடுக்கும். DSC செல் குறைந்த அளவுதான் கொடுக்கிறது. காரணம், ‘நிறைய ஒளியை மின்சாரமாக்கும்’ சாயம் இன்னும் நம்மால் கண்டுபிடிக்கப் படவில்லை.

புதுசாக செய்யும் DSC செல்லிலேயே திறன் குறைவு. பற்றாக்குறைக்கு, நாட்கள் செல்ல செல்ல திறன் இன்னமும் குறைகிறது. இதில் திரவம் (தண்ணீர்) இருப்பதும் ஒரு காரணம். வெளியில் இருந்து தூசி உள்ளே வந்தாலோ, உள்ளே இருக்கும் தண்ணீர் ஏதாவது “லீக்” ஆகி ஆவியாகிவிட்டாலோ, இந்த செல் வேலை செய்யாது, அல்லது திறன் குறைந்து விடும்.

வெயில் அதிகமானால் வெப்பநிலை அதிகமாகும். ஒவ்வொரு பொருளும் வெவ்வேறு அளவு ’விரியும்’ (EXPAND). தண்ணீர் அதிகமாக விரியும், அதனால் அழுத்தம் அல்லது PRESSURE அதிகமாகி செல் உடைந்து விடலாம். ஆராய்ச்சிக் கூடத்தில் செய்வது வேறு, வெளி உலகத்தில் பயன்பாட்டின்போது சோலார் செல் பல சூழ்நிலைகளையும் தாங்கிக் கொண்டு வேலை செய்ய வேண்டும். குளிர்ப்பிரதேசங்களிலும் பிரச்சனைதான். தண்ணீர் உறைந்து பனிக்கட்டி ஆனாலும் இந்த செல் உடையலாம். அப்படி உடையாமல் போனாலும், பனிக்கட்டியில் அயோடைடு அயனிகள் நகர்ந்து செல்லாது, அதனால் மின்சாரம் வராமல் போய்விடும். (தமிழ்நாட்டில் இந்தப் பிரச்சனை இல்லை! வெயில் மட்டும்தான் பிரச்சனை).

இதற்கு மாறாக, சிலிக்கன் சோலார் செல்லில், இருபது அல்லது இருபத்து ஐந்து வருடங்களுக்கு பிரச்சனை இல்லாமல் வேலை செய்யும். வெயில், பனி இவற்றை எல்லாம் தாங்கும். அதனால், DSC செல்லிலும் பலவருடங்கள் பல சூழ்நிலைகளி நல்லபடியாக வேலை செய்ய என்ன செய்ய வேண்டும் என்ற கோணத்தில் ஆராய்ச்சி நடைபெறுகிறது.

Thursday, November 18, 2010

சோலார் செல். (DSSC) பகுதி 1

சோலார் செல்களில் DSSC என்ற வகை கடந்த சில வருடங்களில், ஆராய்ச்சி அளவில் அதிகம் பேசப்படுகிறது. DSSC என்பது Dye Sensitized Solar Cell என்பதன் சுருக்கம். Dye (டை) என்றால் சாயம் என்று பொருள். Sensitized என்பதற்கு இடத்திற்கு ஏற்ப பல பொருள்கள் இருக்கிறது. இந்த இடத்தில் என்ன பொருள்? எடுத்துக்காட்டாக, ”அவர் ரொம்ப சென்சிடிவ்” என்று சொன்னால் , “எளிதில் உணர்ச்சி வசப்படுவார்” அல்லது “தூண்டப்படுவார்” என்று சொல்லலாம். சோலார் செல்லில்?

DSSC (டீ.எஸ்.எஸ்.சி. ) வகை செல்களில் ‘டைடானியம் டைஆக்சைடு” என்ற ஒரு குறைகடத்தி பயன்படுகிறது. ஆனால், அதனால் சூரிய ஒளியை மின்சாரமாக மாற்றுவது முடியாது. அதில் சரியான சாயத்தை பூசினால், சாயம் சூரிய ஒளியை வாங்கி, எலக்ட்ரானை டைடானியம் டை ஆக்சைடுக்கு தரும். இந்த வகை செல்லின் அமைப்பு, வேலை செய்யும் விதம் இவற்றைப் பற்றி விவரமாக படிக்கும் போது, இது புரியும்.

இதற்கு ‘டீ. எஸ். சி.’ (DSC) என்றும், கிரேட்சல் செல் (Graetzel Cell) என்றும் வேறு பெயர்கள் உண்டு. DSC என்பதும் கூட “Dye Sentitized Cell" என்பதன் சுருக்கம்தான். நீளமாக “டீ.எஸ்.எஸ்.சி” என்று சொல்வதற்கு பதில், கொஞ்சம் சுருக்கமாக சொல்லலாம். இந்த வகை செல்களை முதலில் கண்டுபிடித்தவர் சுவிட்சர்லாந்தை சேர்ந்த மைக்கேல் கிரேட்சல் (Michael Graetzel) என்பவராவார். அதனால், இதற்கு ‘கிரேட்சல் செல்’ என்றும் பெயர்.

டீ.எஸ்.எஸ்.சி. அமைப்பு: கீழே இருக்கும் படத்தில் கொடுக்கப்பட்டுள்ளது.


இதில் பலவித பொருள்கள் இருக்கின்றன. மேலே, முதலில் ஒரு கண்ணாடி இருக்கிறது. இது சூரிய ஒளியை உள்ளே விடும், அதே சமயம் மின்சாரத்தையும் கடத்தும். அடுத்து, டைடானியம் ஆக்சைடு என்ற ஒரு குறைகடத்தி, சிறு துகள்களாக இருக்கிறது. அது, மேலே இருக்கும் கண்ணாடியில் ஒட்ட வைக்கப் பட்டு இருக்கும். இவை சில நூறு நேனோ மீட்டர் அளவு இருக்கும். இவை எல்லாமே ஒரே அளவில் இருப்பதில்லை, அதனால் இந்தப் படத்தில் வேறு வேறு அளவில் இருக்கும்படி வரையப் பட்டுள்ளது. (இவற்றை ஒரே அளவில் செய்ய அதிக செலவாகும், அப்படி செய்தாலும் நமக்கு வரும் மின்சாரம் மாறாது, அதனால் கலவையாகவே பயன்படுத்துகிறார்கள்). இவை உண்மையில் வெள்ளை நிறத்தில் இருக்கும் . அதே போல, ஒளி மற்றும் மின்சாரம் கடத்தும் கண்ணாடிகள் நிறமற்றவையாக இருக்கும். ஆனால் இங்கே தெளிவாகத் தெரிவதற்காக ஒவ்வொரு பொருளும் வெவ்வேறு வண்ணங்களில் கொடுக்கப் பட்டு இருக்கின்றன.

அடுத்து சிவப்பு வட்டங்கள் சாயத்தை குறிக்கும். இவை பார்ப்பதற்கு துணிக்கு போடும் சாயம் போல இருந்தாலும் சில குறிப்பிட்ட வகையச் சார்ந்தவை. இது தவிர, அயோடைடு வகை உப்பு இருக்கும். (இந்தப் படத்தில் பச்சை நிற வட்டங்கள்). இவை எல்லாமே தண்ணீரில் கரைந்து இருக்கும். கடைசியில் கீழே மின்சாரம் கடத்தும் கண்ணாடி இருக்கும்.

இந்தப் படத்தில் வண்ணங்களும் அளவுகளும் உண்மையில் சோலார் செல்லில் இருப்பது போல இல்லை. உண்மையில் உப்பு பச்சை நிறத்தில் இருக்காது. அதைப் போலவே, அயோடைடு உப்பு மற்றும் சாயம் இவற்றின் மூலக்கூறுகள் மிகச் சிறிய அளவில் , நேனோ மிட்டருக்கும் குறைவான அளவில் இருக்கும். டைடானியம் ஆக்சைடு சில நூறு நே.மீ. இருக்கும். கண்ணாடி பல மைக்ரான் தடிமன் (ஆயிரம் நே.மீ = 1 மைக்ரான்) இருக்கும். இரண்டு கண்ணாடிகளுக்கும் உள்ள இடைவெளி, பல மைக்ரான்கள் இருக்கும். இருந்தாலும், எளிதாகப் புரிய வைக்க படத்தில் வண்ணங்களும், எல்லா பொருள்களையும் ஏறக்குறைய ஒரே அளவிலும் கொடுத்திருக்கிறேன்.


பிற விவரங்கள்:
சிலிக்கன், காட்மியம் டெலுரைடு, சி.ஐ.ஜி.எஸ். போன்ற சோலார் செல்களுக்கும், DSC செல்களுக்கும் வித்தியாசங்கள் இருக்கின்றன. மற்ற எல்லா செல்களிலும் 'P-type' மற்றும் 'N-type' என்று இரண்டு வகை குறைகடத்திகள் இருக்கும். அவற்றில் ‘எலெக்ட்ரான்கள்’ மற்றும் ‘துளைகள் அல்லது holes' என்பவை மூலம் மின்சாரம் செல்லும்.

ஆனால் DSC செல்லில், ஒரே ஒரு குறைகடத்தி (TiO2 டைடானியம் ஆக்சைடு) தான் இருக்கும். இதன் வழியாக எலக்ட்ரான் மட்டும்தான் செல்லும். இதில் துளைகள் (holes) கிடையாது.

அதைப் போலவே, இதில் திரவ நிலையில் பொருள் இருப்பதையும் பார்க்கலாம். DSC செல்களில் சில சமயம் ‘ஜெல்’ (Gel)போன்ற பொருள்களையும் விஞ்ஞானிகள் பயன்படுத்துகிறார்கள். ஆனால் பெரும்பாலும் DSC செல்களில் திரவ நிலையில்தான் சாயம் இருக்கும். மற்ற சோலார்செல்களில் எல்லாப் பொருள்களுமே திடநிலையில் இருக்கும்.

வரலாறு: இந்த செல் வேலை செய்யும் விதத்தைப் பார்த்தோம். கொஞ்சம் யோசித்தால், இதற்கும், செடிகளுக்கும் இருக்கும் ஒற்றுமை புரியும். மரம், செடி கொடிகள் எல்லாம், சூரிய ஒளியை வைத்து, பச்சயத்தின் (Chlorophyl) மூலம் கார்பன் டை ஆக்சைடை உணவாக மாற்றுகின்றன. இது எப்படி என்றால், பச்சயம் சூரிய ஒளியை விழுங்கி, கட்டற்ற (சுதந்திர) எலக்ட்ரான்களை உருவாக்கும். அந்த எலக்ட்ரான்களைக் கொண்டு வேதி வினைகள் நடக்கும்.

வேறு விதமாக சொன்னால், பச்சயம் சூரிய ஒளியை மின்சாரமாக்கும். பிறகு அந்த மின்சாரத்தைப் பயன்படுத்தி, மின் வேதிவினை (Electrochemical reaction) நடக்கும். இதைப்பற்றி யோசித்த கிரேட்சல், ‘நாமும் பச்சயம் போல ஒரு பொருளைப் பயன்படுத்தி மின்சாரம் தயாரிக்கலாமே’ என்று சொல்லி தொடங்கியதுதான் இந்த செல். இதில் வரும் மின்சாரத்தை மின்வேதி வினைக்கு பயன்படுத்தாமல், வெளியே பயன்பாட்டுக்கு எடுத்துச் செல்வது ஒன்றுதான் வித்தியாசம்.


இது எப்படி வேலை செய்கிறது என்பதை அடுத்த பதிவில் பார்க்கலாம்.